192

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 5. NO. 6, JUNE 1995

A Comparison of the Berenger Perfectly
Matched Layer and the Lindman
Higher-Order ABC’s for the FDTD Method

William V. Andrew, Constantine A. Balanis, Fellow, IEEE. and Panayiotis A. Tirkas, Member, IEEE

Abstract— Higher-order absorbing boundary conditions are
compared to the recently introduced Berenger perfectly matched
layer (PML) absorbing boundary conditions (ABC). Reflections
caused by the ABC’s are examined in both the time and frequency
domains for the case of a line source radiating in a finite com-
putational domain. It is shown that the PML ABC significantly
reduces reflections from the truncation of the computational grid
when compared to 7th order Lindman ABC’s. Also, except for
at low frequencies, higher-order absorbing boundary conditions
are no better than 2nd order Mur absorbing boundaries.

1. INTRODUCTION

HE Finite-Difference Time-Domain (FDTD) method for

the analysis of electromagnetic interaction is a powerful
technique which has found widespread use in recent years.
The method as used for electromagnetic scattering, radiation
and propagation problems was first introduced by Yee [1].
Yee proposed the discretization of the differential form of
Maxwell’s equations in time and space using second order
accurate central differences. The resulting difference equations
are then solved in a time marching sequence by alternately
calculating the electric and magnetic fields on an interlaced
Cartesian grid. The FDTD method is being applied to many
problems involving scattering or radiation in open domains.
The solution of these problems requires the use of radiation
or absorbing boundary conditions to accurately terminate the
computational domain allowing the propagation of electromag-
netic energy out of the computational space.

Analytical absorbing boundary conditions (ABC’s) devel-
oped for open problems include one-way wave equation
(OWWE) based methods. These ABC’s are obtained by
starting with the wave equation and deriving OWWE’s
that allow propagation in the outward direction. Lindman
[2] was the first to propose the use of OWWE’s at the
truncation of the computational space. He suggested the
replacement of the radical in the resulting OWWE with a
series approximation. The Enquist and Majda [3] approach, of
which Mur [4] provided the discretization and application to
the Yee algorithm, is the most widely applied and uses Padé
polynomials to approximate the radical. Halpern and Trefethen

Manuscript received December 7, 1994, This work was supported by the
Advanced Helicopter Electromagnetics Program and NASA Grant NAG-1-
1082.

The authors are with the College of Engineering and Applied Sciences,
Telecommunications Research Center, Arizona State University, Tempe, AZ
85287-7206 USA.

IEEE Log Number 9410995.

[5] proposed several classes of approximations to the radical
involved including least squares, minmax, Chebyshev and
Chebyshev-Padé. Renaut [6] showed that the extension of
these methods to higher orders is neither obvious nor unique
and that their stability cannot be assumed. She also observed
that any approximation to the radical can be presented in a
form equivalent to that proposed by Lin iman. Tirkas, Balanis
and Renaut [7] demonstrated the accuracy and efficiency
of the Halnern and Trefethen approach and the Lindman
approach as extended by Renaut. They showed that the
higher-ordered Lindman ABC (HOABC) with standard Padé
coefficients exhibited the best performance for the TM, case
in a computational domain of 2 : 1 dimension. Subsequently,
MclInturff and Simon [8] provided closed form expressions for
the Lindman expansion coefficients used in these higher-order
ABC’s.

Recently a new ABC has been introduced by Berenger [9],
extended and validated by Katz ef al. [10] and applied by
Reuter et al. [11]. The Berenger “Perfectly Matched Layer”
(PML) involves the application of a nonphysical absorbing
material adjacent to the outer computational boundary. The
method is implemented by splitting certain field components
in the PML region into subcomponents. The PML material
has characteristics which permit electromagnetic waves of
arbitrary frequency and angle of incidence to be absorbed
while maintaining the impedance and velocity of a lossless
dielectric. Berenger reported reflection coefficients for PML
in two dimensions significantly better than second and third
order OWWE based ABC’s. Katz et al. extended the PML
method to three dimensions and verified their effectiveness
in the time domain versus second order Mur ABC’s. It is
the purpose of this paper to compare the time and frequency
domain effectiveness of the Berenger PML ABC, the HOABC
and Mur’s 2nd order ABC.

II. NUMERICAL EXPERIMENTS

In this section, numerical simulations are conducted to
compare the effectiveness of the Berenger PML, the HOABC
of Tirkas, Balanis and Renaut and the Mur 2nd order ABC.
The methodology for the time domain experiments is the same
as that published in [12] and used in most papers introducing
and comparing ABC’s. The procedure involves exciting a z-
directed electric line source centered within the vacuum region
of a 100 x 50 cell test grid, 7. A square Yee cell is used
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Fig. 1. Local error induced by various ABC’s on the boundary after 100
time steps.

with Az = Ay = 0.015 m. The time step, A¢, is set using
At = Azx/2c = 2.5x 10711 s where c is the speed of light in a
vacuum. At the upper end of the frequency band of interest, 3
GHz, Az = M6.667 and the electrical distance to the nearest
absorbing boundary is 25A2 or 3.75\. Toward the lower end
of the band at 100 MHz, Az = A/200 and the electrical
distance to the nearest absorbing boundary is 0.125\.

The excitation is a pulse having very smooth transition to
zero as used in [12] and defined as follows:

E,(50,25,n)
a(10 - 15coswié + 6 coswré — coswsl) LT

0 E>T
4y
where
o= =10"% ¢=nAt
a0 T 0 ST
2
wm = 2 =1,2,3.
T

The pulse has significant low frequency and dc components
where OWWE based ABC’s are widely recognized as being
inaccurate. The test grid, Qp, is terminated by either a 2nd
order Mur ABC, a 7th order Lindman ABC or a PML with a
reflection coefficient of 10~5 backed by PEC walls. A control
FDTD solution having no etrors due to reflections from an
ABC is obtained by running a large FDTD domain, Qp,
centered on Q1 and having an outer boundary so remote that
reflections from its grid truncation are isolated from all points
of compatison between the solution domains.

The error of the computed fields in Q7 due to reflections
from the ABC’s are obtained by subtracting the field at
any point within )7 at any time step from the field at the
corresponding space-time point in {1p

e(i, j) = EX (4, 5) — EP(4,4) )

where ET(i,5) is the electric field component in the test
domain Qg and EB(i,j) is the electric field component in
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Fig. 2. Global error induced in the test domain by various ABC’s as a
function of time.

the large control domain 5. The error can then be calculated
either locally by plotting e(4, §) versus position along a line
parallel to the test ABC or globally by computing the sum of
the squares of the error at each grid point of Q7. The global
error is defined to be

E=33 ¢

Fig. 1 compares the magnitude of the local error at n =100
time steps for the 2-D TM,, case for the 7th order HOABC,
the 2nd order Mur ABC and 4, 8, 12 and 16 cell thick PML re-
gions. As can be seen, the PML ABC provides more reduction
in the local error produced by the absorbing boundary as the
layer becomes thicker. The PML ABC provides significantly
better results when compared to the Mur 2nd order ABC. Also
of significance is the fact that the 7th order HOABC performs
as well as a 4 layer PML region when looking at the induced
local error. However, thicker PML regions provide superior
results to the 7th order HOABC.

Fig. 2 compares the global error versus time step for the
various ABC’s under consideration. The PML ABC produces
significantly less error globally than either of the OWWE
based ABC’s. Also, that error flattens out after the excitation
pulse leaves the computational space whereas the global error
due to the OWWE ABC’s continues to rise as time progresses.
Interestingly, after about 800 time steps, the 2nd order Mur
ABC begins to outperform the 7th order HOABC. This is an
unexpected result which will be explained by looking at the
global error in the frequency domain. The improved global
error obtained with the PML ABC becomes rather significant
when FDTD calculations are run for a large number of time
steps where the accumulated global error from the OWWE
based ABC’s eventually overwhelms the algorithm causing
instability in the solution.

It is also interesting to look at what frequencies error is
being introduced to the test sotution by the ABC. The method-
ology used previously is used for this numerical simulation
except that the excitation is a ramped sinusoid as follows:

©)

E.(50,25,n) = [1 — e~ /20] sin(2r fnA¢)
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Fig. 3. Frequency spectrum of the induced global error in the test domain
by various ABC’s after 300 time steps.

where f is the frequency of excitation and the exponential
term is used to reduce transients introduced by turning on
the source. A solution is run for excitations from 100 MHz
to 3 GHz in 10-MHz increments and the global error is
calculated after 300 time steps. This point in time is chosen
because it is just before the exit of the excitation pulse from
the computational space and also because it is near the peak
global error found in the previous experiments. The results
are shown in Fig. 3. It is interesting to note that the 7th order
HOABC gains its advantage over 2nd order Mur at the lower
frequencies but there are areas in the higher frequencies where
the 2nd order Mur ABC outperforms the 7th order HOABC.

The PML ABC shows excellent results across the band
and actually performs better at lower frequencies. This result
indicates that the PML ABC will extend the low frequency
application of the FDTD algorithm by removing the required
electrical distance to the grid truncation widely assumed by
OWWE based ABC’s. For instance, consider a FDTD solution
utilizing a cell size of A/200. Using Mur 2nd order ABC’s,
200 cells or one wavelength of free space is typically required
from the outermost edge of the radiator/scatterer to the grid
truncation. Likewise, the HOABC would require one quarter
wavelength or 50 cells. A 12 cell deep PML region using
a 5-cell deep free space region which contains a near-to-
far field transformation surface would require 17 cells from
the radiator/scatterer to the grid truncation. This results in
a significant savings in computational space required for
electrically small cell FDTD solutions.

III. CONCLUSION

The Berenger PML is a significant advancement in the
application of the FDTD miethod to electromagnetic inter-
actions. The near independence of frequency, the orders of
magnitude better accuracy when compared to OWWE based
ABC’s and the ease of implementation make the Berenger
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PML an absorbing boundary which will allow the FDTD
method to examine problems which previously were difficult
if not impossible to analyze. The frequency domain analysis
of the various ABC’s shows that the PML ABC will make
significant contributions at lower frequencies where the FDTD
method has been restricted by the electrical distance to the grid
truncation required of OWWE based ABC’s. As will be seen
in a future paper, the PML ABC has been used to accurately
predict the wideband input impedance and far-field radiation
patterns of a 14’ loop antenna in the HF (2-30 MHz) band
utilized on a full scale Apache helicopter. The calculations
were made with a cubical cell size of 0.1778 m, electrical
distances to the start of a 12 cell PML region as small as
M150 at 2 MHz and a solution run of 32 768 time steps.

Another significant result of this study is the realization
that HOABC’s provide results in middle to upper frequency
regions that are no better than Mur 2nd order ABC’s. The
main advantage of HOABC’s over Mur 2nd order ABC’s is
realized at lower frequencies where electrically small cell sizes
are used. The HOABC’s allow fewer cells to be applied to free-
space from the scatterer or radiator to the grid truncation. A
significant advantage of the Berenger PML ABC is that these
electrical distance to the absorbing boundary requirements are
reduced significantly.
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